NASA’s Webb captures celestial fireworks around a forming star

L1527 and Protostar (MIRI Image). Credit: Space Telescope Science Institute

The cosmos seems to come alive with a crackling explosion of pyrotechnics in this new image from NASA’s James Webb Space Telescope. This fiery hourglass captured by Webb’s MIRI (Mid-Infrared Instrument) shows the scene of a very young object becoming a star. The central protostar grows in the mouth of the hourglass, accreting material from the thin protoplanetary disk, seen from the side as dark lines.

The protostar, a relatively young object of about 100,000 years old, is still surrounded by its parent molecular cloud, or large region of gas and dust. Webb’s previous NIRCam (Near-Infrared Camera) observation of L1527 gave us a peek into the region, revealing this molecular cloud and protostar in opaque, glowing colors.

Both NIRCam and MIRI show the effects of outflows that are emitted in opposite directions along the rotation axis of the protostar as the object consumes gas and dust from the surrounding cloud. These eruptions take the form of shock waves into the surrounding molecular cloud, which throughout their extent appear as fibrous structures.

They are also responsible for carving out the clear hourglass structure in the molecular cloud as they energize or excite the surrounding matter, causing the regions above and below it to glow. This creates an effect reminiscent of fireworks lighting up a cloudy night sky. Unlike NIRCam, which mostly shows light that bounces off dust, MIRI provides a look at how these outflows affect the densest dust and gases in the region.

The areas colored blue here, which comprise most of the hourglass, show mostly carbonaceous molecules known as polycyclic aromatic hydrocarbons. The protostar itself and the dense dust mantle and gas mixture surrounding it are shown in red. (The sparklers similar to the red extension are an artifact of the telescope’s optics).

Meanwhile, MIRI reveals a white region directly above and below the protostar that does not show up as strongly in the NIRCam view. This region is a mixture of hydrocarbons, ionized neon, and dense dust, indicating that the protostar is propelling this matter quite far apart as it consumes material from its disk in a disorderly manner.

As the protostar continues to age and release energy jets, it consumes, destroys, and pushes away much of this molecular cloud, and many of the structures we see here begin to disappear. Eventually, as it finishes accreting mass, this impressive display ends and the star itself becomes more apparent, even to our visible-light telescopes.

Combining near- and mid-infrared analyzes reveals the overall behavior of this system, including how the central protostar affects the surrounding region. Other stars in Taurus, the star-forming region where L1527 resides, are forming in just this way, which could disrupt other molecular clouds and either prevent new stars from forming or catalyze their evolution.

Provided by the Space Telescope Science Institute

Citation: NASA’s Webb captures celestial fireworks around forming star (2024, July 2) Retrieved July 3, 2024, from https://phys.org/news/2024-07-nasa-webb-captures-celestial-fireworks.html

This document is subject to copyright. Except for any bona fide act for the purpose of private study or research, no part may be reproduced without written permission. The content is provided for informational purposes only.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top